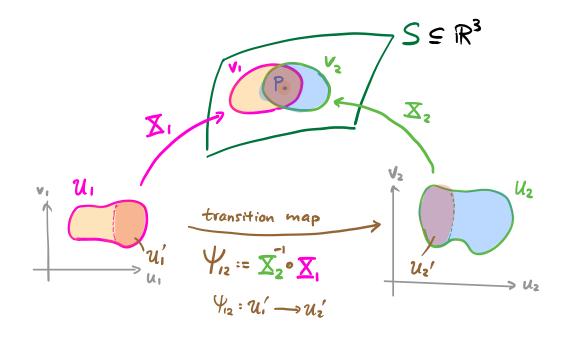
§ Change of parameters/coordinates (do Carmo § 2.3)

Consider a point $P \in S$ covered by two coordinate systems



 $\frac{\text{Claim: } \Psi_{12} : \mathcal{U}_{1}' \longrightarrow \mathcal{U}_{2}' \text{ is a diffeomorphism}}{(\text{between open sets in } \mathbb{R}^{2})}$

<u>Proof</u>: Clearly, Ψ_{12} is a homeomorphism with inverse $\Psi_{12}^{-1} = \Psi_{21} := X_1^{-1} \cdot X_2 : U_2' \longrightarrow U_1'$

It remains to show that Ψ_{12} is smooth. Since S is locally a graph, say over $\times y$ -plane. Let $\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the projection map onto $\times y$ -plane.

Then,

$$\begin{aligned}
\psi_{12} &= X_2^{-1} \circ X_1 = \left(\pi \circ X_2 \right)^{-1} \circ \pi \circ X_1 \quad Smooth! \\
& \text{Smooth maps on} \quad \mathbb{R}^2 \to \mathbb{R}^2 \quad \mathbb{R}^3 \to \mathbb{R}^3 \quad \mathbb{R}^3 \to \mathbb{R}^3 \\
& \text{open subsets of} \quad ---- 0
\end{aligned}$$

§ Differentiability (do Carmo § 2.3)

We now define the concept of "differentiability" of functions into and out of a surface $S \subseteq iR^3$.

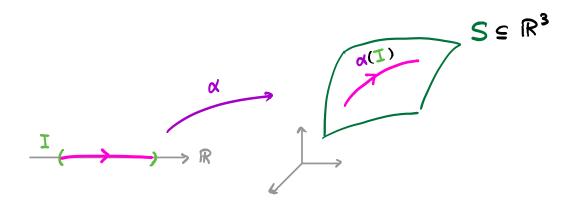
 $\frac{\text{Def}^{n}}{\text{if } f \circ X} : \mathcal{U} \subseteq iR^{2} \longrightarrow iR^{n} \text{ is smooth}$ $for \underline{ANY} \text{ parametrization } X : \mathcal{U} \subseteq iR^{2} \longrightarrow S$

Remark:Since change of coordinates
$$Y_{12}$$
 are smooth
diffeomorphisms, we just have to check smoothness
on Some collection of parametrizations covering S.Example:(Restriction of smooth functions on \mathbb{R}^3)Let $f: \bigvee \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}$ be a smooth function
s.t. $S \subseteq \bigvee$, then
 $f|_S: S \longrightarrow \mathbb{R}$ is smooth.In particular, the restrict of the coordinate functions
 χ, g and z to S are smooth functions.FACT: $f, g: S \rightarrow \mathbb{R}$ $f = g: S \rightarrow \mathbb{R}$ $f = g, fg, fg$

Smooth

Smooth (if well-defined) <u>Def</u>: A map $f: U \subseteq \mathbb{R}^n \longrightarrow S$ is smooth if it is smooth as a map $f: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^3$.

Example: Curves on a surface Let $\alpha: I \longrightarrow iR^3$ be a space curve with $\alpha(I) \subseteq S$ Then, $\alpha: I \subseteq iR \longrightarrow S$ is smooth.



<u>Def</u>²: A map $f: S_1 \rightarrow S_2$ between two surfaces is smooth if $f \cdot X_1 : U_1 \leq \mathbb{R}^2 \rightarrow S_2 \leq \mathbb{R}^3$ is smooth for any parametrization X_1 of S_1 .

